package nizk import ( . "kesim.org/seal/common" "kesim.org/seal/nizk/schnorr" ) type Bit struct { id Bytes set bool α *Scalar β *Scalar *Commitment prf *Proof *Stage } type Commitment struct { A *Point // g^α B *Point // g^β C *Point // g^(ab)g^(set) } // This is a construction of a proof of a statement of the form // // [(C = g^(αβ)) && (A = g^α) && (Β = g^β)] // || [(C = g^(αβ+1)) && (A = g^α) && (Β = g^β)] // // for given C, A and B type Proof struct { A *schnorr.Proof // Proof for knowledge of α in A = G^α B *schnorr.Proof // Proof for knowledge of β in B = G^β C struct { // Proof for knowledge of statement above Ch [2]*Scalar R [2]*Scalar } } func NewBit(id Bytes, set bool) (*Bit, *Commitment, *Proof) { α, β := Curve.RandomScalar(), Curve.RandomScalar() return NewBitFromScalars(id, set, α, β) } func NewBitFromScalars(id Bytes, set bool, α, β *Scalar) (*Bit, *Commitment, *Proof) { b := &Bit{ id: id, set: set, α: α, β: β, } return b, b.commit(), b.proof() } func (b *Bit) IsSet() bool { return b.set } func (b *Bit) commit() *Commitment { if b.Commitment != nil { return b.Commitment } var C *Point c := b.α.Mul(b.β) if b.set { C = G.Exp(c.Add(One)) } else { C = G.Exp(c) } b.Commitment = &Commitment{ C: C, A: G.Exp(b.α), B: G.Exp(b.β), } return b.Commitment } func (s *Bit) proof() *Proof { if s.prf != nil { return s.prf } var e [2][2]*Point var r1, r2, w *Scalar r1 = Curve.RandomScalar() r2 = Curve.RandomScalar() w = Curve.RandomScalar() c := s.commit() if s.set { e[0][0] = G.Exp(r1) e[0][1] = c.B.Exp(r1).Mul(G.Exp(w)) e[1][0] = G.Exp(r2) e[1][1] = c.B.Exp(r2) } else { e[0][0] = G.Exp(r1) e[0][1] = c.B.Exp(r1) e[1][0] = G.Exp(r2).Mul(c.A.Exp(w)) e[1][1] = c.B.Exp(r2).Mul(c.C.Div(G).Exp(w)) } ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], s.id) pr := &Proof{} if s.set { pr.C.Ch[0] = w pr.C.Ch[1] = ch.Sub(w) pr.C.R[0] = r1.Sub(s.α.Mul(pr.C.Ch[0])) pr.C.R[1] = r2.Sub(s.α.Mul(pr.C.Ch[1])) } else { pr.C.Ch[0] = ch.Sub(w) pr.C.Ch[1] = w pr.C.R[0] = r1.Sub(s.α.Mul(pr.C.Ch[0])) pr.C.R[1] = r2 } pr.A = (*schnorr.Statement)(s.α).Proof(s.id) pr.B = (*schnorr.Statement)(s.β).Proof(s.id) s.prf = pr return pr } func (c *Commitment) Verify(id Bytes, p *Proof) bool { var e [2][2]*Point e[0][0] = G.Exp(p.C.R[0]).Mul(c.A.Exp(p.C.Ch[0])) e[0][1] = c.B.Exp(p.C.R[0]).Mul(c.C.Exp(p.C.Ch[0])) e[1][0] = G.Exp(p.C.R[1]).Mul(c.A.Exp(p.C.Ch[1])) e[1][1] = c.B.Exp(p.C.R[1]).Mul(c.C.Div(G).Exp(p.C.Ch[1])) ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], id) return p.C.Ch[0].Add(p.C.Ch[1]).Equal(ch) && (*schnorr.Commitment)(c.A).Verify(p.A, id) && (*schnorr.Commitment)(c.B).Verify(p.B, id) }