package nizk import ( . "kesim.org/seal/common" "kesim.org/seal/nizk/schnorr" ) // This is a construction of a proof of a statement of the form // [(C = g^(αβ)) && (A = g^α) && (Β = g^β)] // || [(C = g^(αβ+1)) && (A = g^α) && (Β = g^β)] // // for given C, A and B type Bit struct { bitSet bool α *Scalar β *Scalar } type Commitment struct { A *Point // g^α B *Point // g^β C *Point // g^(ab)g^(bitSet) } func NewBit(bitSet bool) *Bit { α, β := Curve.RandomScalar(), Curve.RandomScalar() return NewBitFromScalars(bitSet, α, β) } func NewBitFromScalars(bitSet bool, α, β *Scalar) *Bit { return &Bit{ α: α, β: β, bitSet: bitSet, } } func (b *Bit) commitment() *Commitment { var C *Point c := b.α.Mul(b.β) if b.bitSet { C = G.Exp(c.Add(One)) } else { C = G.Exp(c) } return &Commitment{ C: C, A: G.Exp(b.α), B: G.Exp(b.β), } } type Proof struct { Id Bytes A *schnorr.Proof // Proof for knowledge of α in A = G^α B *schnorr.Proof // Proof for knowledge of β in B = G^β C struct { // Proof for knowledge of statement above Ch [2]*Scalar R [2]*Scalar } } func (s *Bit) proof(id Bytes, c *Commitment) *Proof { var e [2][2]*Point var r1, r2, w *Scalar r1 = Curve.RandomScalar() r2 = Curve.RandomScalar() w = Curve.RandomScalar() if s.bitSet { e[0][0] = G.Exp(r1) e[0][1] = c.B.Exp(r1).Mul(G.Exp(w)) e[1][0] = G.Exp(r2) e[1][1] = c.B.Exp(r2) } else { e[0][0] = G.Exp(r1) e[0][1] = c.B.Exp(r1) e[1][0] = G.Exp(r2).Mul(c.A.Exp(w)) e[1][1] = c.B.Exp(r2).Mul(c.C.Div(G).Exp(w)) } ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], id) pr := &Proof{Id: id} if s.bitSet { pr.C.Ch[0] = w pr.C.Ch[1] = ch.Sub(w) pr.C.R[0] = r1.Sub(s.α.Mul(pr.C.Ch[0])) pr.C.R[1] = r2.Sub(s.α.Mul(pr.C.Ch[1])) } else { pr.C.Ch[0] = ch.Sub(w) pr.C.Ch[1] = w pr.C.R[0] = r1.Sub(s.α.Mul(pr.C.Ch[0])) pr.C.R[1] = r2 } pr.A = (*schnorr.Statement)(s.α).Proof(id) pr.B = (*schnorr.Statement)(s.β).Proof(id) return pr } func (s *Bit) Commit(id Bytes) (*Commitment, *Proof) { c := s.commitment() return c, s.proof(id, c) } func (c *Commitment) Verify(p *Proof) bool { var e [2][2]*Point e[0][0] = G.Exp(p.C.R[0]).Mul(c.A.Exp(p.C.Ch[0])) e[0][1] = c.B.Exp(p.C.R[0]).Mul(c.C.Exp(p.C.Ch[0])) e[1][0] = G.Exp(p.C.R[1]).Mul(c.A.Exp(p.C.Ch[1])) e[1][1] = c.B.Exp(p.C.R[1]).Mul(c.C.Div(G).Exp(p.C.Ch[1])) ch := Challenge(G, c.C, c.A, c.B, e[0][0], e[0][1], e[1][0], e[1][1], p.Id) return p.C.Ch[0].Add(p.C.Ch[1]).Equal(ch) && (*schnorr.Commitment)(c.A).Verify(p.A, p.Id) && (*schnorr.Commitment)(c.B).Verify(p.B, p.Id) }