package symbolyze import ( "bufio" "debug/elf" "fmt" "log" "os" "path/filepath" "strconv" "strings" ) // Scanner represents an engine for scanning for a specific symbol in all // ELF-files matching a certain pattern. The pattern is described in // fileapth.Match(). // // Once a Scanner is created with New(), it should be populated with Observer // functions using OnFound(). Optionally, the scanner can be put into // debugging mode by a call to DebugOn() prior to a call to Run(). // // A call to Scanner.Run() then starts the engine and it will scan all pids in // /proc. Whenever a match is found, all observers will be called with the // (pid, offset), concurrently. type Scanner struct { symbol string pathglob string cache map[string]uint64 // Contains (pathname, offset) observers []Observer // Callbacks logger // Embedded logger // Instead of using a boolean to indicate debugging, we use function // members. This way we can populate them with noop-functions in the // non-debug case and not polute the code with if-statements. debugf func(format string, v ...interface{}) debugln func(v ...interface{}) err error // error state of the scanner. } // We use a lowercase type alias for *log.Logger so that we can embedd it in // Scanner without exporting it. type logger = *log.Logger // An Observer is a callback that can be registerd with Scanner.OnFound. It // will be called with a pid and an offset. Observers are called concurrently. // They have to be thread-safe. type Observer func(pid int, offset uint64) error // New returns a new Scanner that scans all running processes for the given // symbol name in all memory-mapped files matching the given pathglob. // To be useful, one or more Observer functions should be registerd with // Scanner.OnFound(). The scanning starts with a call of Scanner.Run(). func New(symbol, pathglob string) *Scanner { return &Scanner{ symbol: symbol, pathglob: pathglob, cache: map[string]uint64{}, logger: log.New(os.Stderr, "[symbolyze] ", log.Ltime|log.Lmicroseconds), // debugging is off per default. debugf: func(string, ...interface{}) {}, debugln: func(...interface{}) {}, } } // Debug sets the scanner into debugging mode. It must called only once before // a call to Scanner.Run(). func (S *Scanner) DebugOn() { // Use the embedded *log.Logger for debugging. S.debugf = S.Printf S.debugln = S.Println S.debugln("starting in debug-mode") } // setErrorf puts the Scanner into an error state with the given error // statement. It also logs the error. func (S *Scanner) setErrorf(format string, a ...interface{}) { S.err = fmt.Errorf(format, a...) S.Printf(format, a...) } // OnFound puts an Observer function into the interal queue. The functions are // called in sequence in their own goroutine whenever the scanner finds the // symbol in the a running program. That implies that an Observer has to be // thread-safe. Errors from the observers will be logged. // // Calling OnFound is not thread-safe. func (S *Scanner) OnFound(fun Observer) { S.observers = append(S.observers, fun) return } // Run starts the scanning process. It scans the maps file all processes in // /proc for pathnames that match the provided pathglob and that are ELF // executables or shared libraries. It searches for the provided symbol in // those files and calls the registered Observer functions concurrently with // the pid and offset of the symbol. // // Run will return an error if it couldn't read the proc filesystem. Otherwise // it will try to continue to loop over all pids, writing potential errors to // the console. Errors from the observer functions are also logged and the // final such error is the return value of Run(). func (S *Scanner) Run() error { if S.err != nil { return S.err } proc, err := os.Open("/proc") if err != nil { S.setErrorf("Failed to open /proc: %v\n", err) return S.err } infos, err := proc.Readdir(-1) if err != nil { S.setErrorf("Failed to read /proc: %v\n", err) return S.err } proc.Close() for _, pinfo := range infos { var pid_s = pinfo.Name() // The entry /proc/NNN/ must be a directory with integer name if !pinfo.IsDir() { continue } else if pid, err := strconv.Atoi(pid_s); err != nil { continue } else if offset, found := S.searchSymbolIn(pid); !found { continue } else { // Notify the observers. for n, observer := range S.observers { go func() { err = observer(pid, offset) if err != nil { S.setErrorf("S.observer[%d] error: %v", n, err) // TODO: propagate errors from all Observers. } }() } } } return S.err } // searchSymbolIn loops over the entries in /proc//maps and searches for // the symbol in the mapped files. // // The current implementation makes the following assumptions: // 1. The pathname in an entry does not contain spaces. // 2. The pathname starts with /. // 3. The symbol must be in a region that has permission "rw-p". // 4. The symbol is present at most in one mapped file at the same time. // // It returns the offsets in memory of the running program, if found. func (S *Scanner) searchSymbolIn(pid int) (offset uint64, found bool) { path := filepath.Join("/proc", strconv.Itoa(pid), "maps") maps, err := os.Open(path) if err != nil { S.Printf("%v\n", err) return 0, false } defer maps.Close() // Read the entries by line scanner := bufio.NewScanner(maps) for scanner.Scan() { // A line of our interest in the maps file has the following // structure, see man proc(5). // // 0 1 2 3 4 5 // address perms offset dev inode pathname // 7fdd8fece000-7fdd8ff74000 rw-p 00423000 fd:01 14156759 /usr/lib/x86_64-linux-gnu/libpython3.7m.so.1.0 // We assume that the pathname contains no spaces so // bytes.Fields splits the line excactly into six fields fields := strings.Fields(scanner.Text()) if len(fields) != 6 { continue } pathname := fields[5] if !strings.HasPrefix(pathname, "/") { // Not a pathname continue } // The filename must match the given pattern filename := filepath.Base(pathname) ok, err := filepath.Match(S.pathglob, filename) if err != nil || !ok { continue } // The symbol needs to be writable if fields[1] != "rw-p" { continue } // Get the start address of the mapped region in memory startAddress, _, err := parseRange(fields[0]) if err != nil { S.Printf("%v\n", err) continue } // Read the offset in the file that this region is mapping fileOffset, err := strconv.ParseUint(fields[2], 16, 64) if err != nil { S.Printf("fields[2] %#q: %v\n", fields[2], err) continue } // Finally, find the symbol in the binary. If found, // findSymbol returns the offset of the symbol in memory, // taking alignment into account. memOffset, found := S.findSymbol(pathname) if !found { continue } // Hurray, we've found an entry! return startAddress + memOffset - fileOffset, true } return 0, false } // findSymbol searches for the provided symbol in the given pathname to an // ELF-file. If found, it returns the offset of the symbol in the virtual // memory according to the fomula: // // vmOffset = alignedOffset(section) + offsetInSection(symbol) // // The result will be cached so that subsequent calls to findSymbol with the // same pathname can quickly return. func (S *Scanner) findSymbol(pathname string) (offset uint64, found bool) { // 0. Return the value from the cache, if found. if offset, found = S.cache[pathname]; found { return offset, found } // 1. Open the file with the ELF-parser file, err := elf.Open(pathname) if err != nil { S.Printf("%v", err) return 0, false } defer file.Close() // 2. Find the symbol symbols, err := file.DynamicSymbols() if err != nil { S.Printf("%v", err) return 0, false } var sym *elf.Symbol for _, s := range symbols { if s.Name == S.symbol { S.debugf("Found symbol %#v in %s: %#v\n", sym, pathname, s) sym = &s break } } if sym == nil { S.debugf("symbol %q not found in %s\n", sym, pathname) return 0, false } // 3. Extract the information about the section if len(file.Sections) < int(sym.Section) { S.debugf("len(file.Section) < int(sym.Section) for symbol %q in %s\n", sym, pathname) return 0, false } section := file.Sections[sym.Section] if section == nil { S.debugf("Section %v not found for ELF-Header %q in %s\n", sym.Section, pathname) return 0, false } // 4. Calculate the offset of the given section, aligned according to // the SectionHeader.Addralign entry. mask := section.SectionHeader.Addralign - 1 alignedSectOff := (section.SectionHeader.Offset + mask) & (^mask) // 5. The location of the symbol in virtual memory is finally: vmOffset := alignedSectOff + (sym.Value - section.SectionHeader.Addr) // 6. Store this calculation in our cache so that we don't to touch // this file again. S.cache[pathname] = vmOffset return vmOffset, true } // parseRange is a helper function that parses the first field in a line in // /proc//maps: // 7fdd8fece000-7fdd8ff74000 rw-p ... // It returns the start and end addresses of the range and a potential error. func parseRange(input string) (start, end uint64, e error) { // 7fdd8fece000-7fdd8ff74000 parts := strings.Split(input, "-") if len(parts) != 2 { e = fmt.Errorf("[parseRange] unrecognized format for region: %#q", input) return 0, 0, e } start, e = strconv.ParseUint(parts[0], 16, 64) if e != nil { e = fmt.Errorf("[parseRange] couldn't parse start-address %#q in %#q: %w", parts[0], input, e) return 0, 0, e } end, e = strconv.ParseUint(parts[1], 16, 64) if e != nil { e = fmt.Errorf("[parseRange] couldn't parse end-address %#q in %#q: %w", parts[1], input, e) return 0, 0, e } return start, end, e }